Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171247, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423333

RESUMO

Irrigation is considered a form of agricultural intensification and is of significant importance in arid and semi-arid regions, such as those in the Mediterranean basin. This region differs substantially from temperate ones, in terms of climate, land-use policies and types of agricultural systems. Therefore, how biodiversity is affected by agricultural intensification may also differ substantially from countries in north-western Europe. We investigated the effect of irrigation on butterfly diversity and abundance at two different spatial scales in an agricultural region in northern Cyprus, an area representative of typical lowland agricultural practices of the Eastern Mediterranean. We investigated how local field-scale management (irrigated vs rain-fed) and the proportion of irrigated land at a larger scale of 0.25 km2 affected the abundance and diversity of butterflies and herbaceous plant species. Butterflies and herbaceous plants were surveyed in field boundaries adjacent to agricultural fields located in paired plots that had contrasting levels of irrigation. Butterflies in the field boundaries along agricultural fields were strongly positively affected by irrigation in the adjacent fields both in terms of abundance and species diversity, whereas the effect of irrigation at the larger scale of the 0.25-km2 plot was less prominent. Species composition of butterflies and plants did not correlate. However, plant abundance and alpha diversity of the vegetation in the field boundaries correlated with both abundance and alpha diversity of the butterflies when the abundance of plants was relatively low, in particular, when grasses were omitted from the data set. Crop species associated with irrigated fields contributed to the observed patterns. Comparing the results of this study with those reported for temperate regions in northwestern Europe reveals that the effectiveness of management schemes on biodiversity depend on biogeographical region, highlighting the risk of making broad assumption on the effectiveness of management strategies on biodiversity.


Assuntos
Borboletas , Animais , Fazendas , Biodiversidade , Agricultura , Plantas , Chipre , Ecossistema
2.
Oecologia ; 203(3-4): 311-321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889312

RESUMO

Parasitoids induce physiological changes in their herbivorous hosts that affect how plants respond to herbivory. The signature of parasitoids on induced plant responses to feeding by parasitized herbivores indirectly impacts insect communities interacting with the plant. The effect may extend to parasitoids and cause indirect interaction between parasitoids that develop inside different herbivore hosts sharing the food plant. However, this type of interactions among parasitoid larvae has received very little attention. In this study, we investigated sequential and simultaneous plant-mediated interactions among two host-parasitoid systems feeding on Brassica oleracea plants: Mamestra brassicae parasitized by Microplitis mediator and Pieris rapae parasitized by Cotesia rubecula. We measured the mortality, development time, and weight of unparasitized herbivores and performance of parasitoids that had developed inside the two herbivore species when sharing the food plant either simultaneously or sequentially. Plant induction by parasitized or unparasitized hosts had no significant effect on the performance of the two herbivore host species. In contrast, the two parasitoid species had asymmetrical indirect plant-mediated effects on each other's performance. Cotesia rubecula weight was 15% higher on plants induced by M. mediator-parasitized hosts, compared to control plants. In addition, M. mediator development time was reduced by 30% on plants induced by conspecific but not heterospecific parasitoids, compared to plants induced by its unparasitized host. Contrary to sequential feeding, parasitoids had no effect on each other's performance when feeding simultaneously. These results reveal that indirect plant-mediated interactions among parasitoid larvae could involve any parasitoid species whose hosts share a food plant.


Assuntos
Brassica , Borboletas , Vespas , Animais , Vespas/fisiologia , Interações Hospedeiro-Parasita , Larva/fisiologia , Borboletas/fisiologia , Herbivoria
3.
J Pest Sci (2004) ; : 1-17, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37360044

RESUMO

Root herbivores pose a major threat to agricultural crops. They are difficult to control and their damage often goes unnoticed until the larvae reach their most devastating late instar stages. Crop diversification can reduce pest pressure, generally without compromising yield. We studied how different diversified cropping systems affected the oviposition and abundance of the specialist cabbage root fly Delia radicum, the most important root herbivore in Brassica crops. The cropping systems included a monoculture, pixel cropping, and four variations of strip cropping with varying intra- and interspecific crop diversity, fertilization and spatial configuration. Furthermore, we assessed whether there was a link between D. radicum and other macroinvertebrates associated with the same plants. Cabbage root fly oviposition was higher in strip cropping designs compared to the monoculture and was highest in the most diversified strip cropping design. Despite the large number of eggs, there were no consistent differences in the number of larvae and pupae between the cropping systems, indicative of high mortality of D. radicum eggs and early instars especially in the strip cropping designs. D. radicum larval and pupal abundance positively correlated with soil-dwelling predators and detritivores and negatively correlated with other belowground herbivores. We found no correlations between the presence of aboveground insect herbivores and the number of D. radicum on the roots. Our findings indicate that root herbivore presence is determined by a complex interplay of many factors, spatial configuration of host plants, and other organisms residing near the roots. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-023-01629-1.

4.
Annu Rev Entomol ; 68: 109-128, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36198401

RESUMO

Parasitoid wasps are important components of insect food chains and have played a central role in biological control programs for over a century. Although the vast majority of parasitoids exploit insect herbivores as hosts, others parasitize predatory insects and arthropods, such as ladybird beetles, hoverflies, lacewings, ground beetles, and spiders, or are hyperparasitoids. Much of the research on the biology and ecology of parasitoids of predators has focused on ladybird beetles, whose parasitoids may interfere with the control of insect pests like aphids by reducing ladybird abundance. Alternatively, parasitoids of the invasive ladybird Harmonia axyridis may reduce its harmful impact on native ladybird populations. Different life stages of predatory insects and spiders are susceptible to parasitism to different degrees. Many parasitoids of predators exhibit intricate physiological interrelationships with their hosts, adaptively manipulating host behavior, biology, and ecology in ways that increase parasitoid survival and fitness.


Assuntos
Afídeos , Besouros , Aranhas , Vespas , Animais , Vespas/fisiologia , Ecologia , Besouros/fisiologia , Cadeia Alimentar , Afídeos/fisiologia , Comportamento Predatório/fisiologia
5.
New Phytol ; 235(6): 2378-2392, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717563

RESUMO

Plants face attackers aboveground and belowground. Insect root herbivores can lead to severe crop losses, yet the underlying transcriptomic responses have rarely been studied. We studied the dynamics of the transcriptomic response of Brussels sprouts (Brassica oleracea var. gemmifera) primary roots to feeding damage by cabbage root fly larvae (Delia radicum), alone or in combination with aboveground herbivory by cabbage aphids (Brevicoryne brassicae) or diamondback moth caterpillars (Plutella xylostella). This was supplemented with analyses of phytohormones and the main classes of secondary metabolites; aromatic, indole and aliphatic glucosinolates. Root herbivory leads to major transcriptomic rearrangement that is modulated by aboveground feeding caterpillars, but not aphids, through priming soon after root feeding starts. The root herbivore downregulates aliphatic glucosinolates. Knocking out aliphatic glucosinolate biosynthesis with CRISPR-Cas9 results in enhanced performance of the specialist root herbivore, indicating that the herbivore downregulates an effective defence. This study advances our understanding of how plants cope with root herbivory and highlights several novel aspects of insect-plant interactions for future research. Further, our findings may help breeders develop a sustainable solution to a devastating root pest.


Assuntos
Brassica , Mariposas , Animais , Brassica/genética , Brassica/metabolismo , Glucosinolatos/metabolismo , Herbivoria/fisiologia , Insetos/metabolismo , Larva/fisiologia , Mariposas/fisiologia , Transcriptoma/genética
6.
New Phytol ; 230(1): 341-353, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305360

RESUMO

Evolutionary arms-races between plants and insect herbivores have long been proposed to generate key innovations such as plant toxins and detoxification mechanisms that can drive diversification of the interacting species. A novel front-line of plant defence is the killing of herbivorous insect eggs. We test whether an egg-killing plant trait has an evolutionary basis in such a plant-insect arms-race. Within the crucifer family (Brassicaceae), some species express a hypersensitive response (HR)-like necrosis underneath butterfly eggs (Pieridae) that leads to eggs desiccating or falling off the plant. We studied the phylogenetic distribution of this trait, its egg-killing effect on and elicitation by butterflies, by screening 31 Brassicales species, and nine Pieridae species. We show a clade-specific induction of strong, egg-killing HR-like necrosis mainly in species of the Brassiceae tribe including Brassica crops and close relatives. The necrosis is strongly elicited by pierid butterflies that are specialists of crucifers. Furthermore, HR-like necrosis is linked to PR1 defence gene expression, accumulation of reactive oxygen species and cell death, eventually leading to egg-killing. Our findings suggest that the plants' egg-killing trait is a new front on the evolutionary arms-race between Brassicaceae and pierid butterflies beyond the well-studied plant toxins that have evolved against their caterpillars.


Assuntos
Borboletas , Animais , Herbivoria , Larva , Filogenia
7.
Glob Chang Biol ; 26(12): 6685-6701, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33006246

RESUMO

Insects are among the most diverse and widespread animals across the biosphere and are well-known for their contributions to ecosystem functioning and services. Recent increases in the frequency and magnitude of climatic extremes (CE), in particular temperature extremes (TE) owing to anthropogenic climate change, are exposing insect populations and communities to unprecedented stresses. However, a major problem in understanding insect responses to TE is that they are still highly unpredictable both spatially and temporally, which reduces frequency- or direction-dependent selective responses by insects. Moreover, how species interactions and community structure may change in response to stresses imposed by TE is still poorly understood. Here we provide an overview of how terrestrial insects respond to TE by integrating their organismal physiology, multitrophic, and community-level interactions, and building that up to explore scenarios for population explosions and crashes that have ecosystem-level consequences. We argue that TE can push insect herbivores and their natural enemies to and even beyond their adaptive limits, which may differ among species intimately involved in trophic interactions, leading to phenological disruptions and the structural reorganization of food webs. TE may ultimately lead to outbreak-breakdown cycles in insect communities with detrimental consequences for ecosystem functioning and resilience. Lastly, we suggest new research lines that will help achieve a better understanding of insect and community responses to a wide range of CE.


Assuntos
Mudança Climática , Ecossistema , Animais , Surtos de Doenças , Herbivoria , Insetos , Temperatura
8.
Mol Ecol ; 29(20): 4014-4031, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853463

RESUMO

Plant chemical defences impact not only herbivores, but also organisms in higher trophic levels that prey on or parasitize herbivores. While herbivorous insects can often detoxify plant chemicals ingested from suitable host plants, how such detoxification affects endoparasitoids that use these herbivores as hosts is largely unknown. Here, we used transformed plants to experimentally manipulate the major detoxification reaction used by Plutella xylostella (diamondback moth) to deactivate the glucosinolate defences of its Brassicaceae host plants. We then assessed the developmental, metabolic, immune, and reproductive consequences of this genetic manipulation on the herbivore as well as its hymenopteran endoparasitoid Diadegma semiclausum. Inhibition of P. xylostella glucosinolate metabolism by plant-mediated RNA interference increased the accumulation of the principal glucosinolate activation products, the toxic isothiocyanates, in the herbivore, with negative effects on its growth. Although the endoparasitoid manipulated the excretion of toxins by its insect host to its own advantage, the inhibition of herbivore glucosinolate detoxification slowed endoparasitoid development, impaired its reproduction, and suppressed the expression of genes of a parasitoid-symbiotic polydnavirus that aids parasitism. Therefore, the detoxification of plant glucosinolates by an herbivore lowers its toxicity as a host and benefits the parasitoid D. semiclausum at multiple levels.


Assuntos
Mariposas , Vespas , Animais , Glucosinolatos , Herbivoria , Larva
9.
Environ Entomol ; 49(4): 924-930, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32457993

RESUMO

In three Dutch populations of the native small hogweed (Heracleum sphondylium L. [Apiales: Apiaceae]), and one of the invasive giant hogweed (H. mantegazzianum Sommeier & Levier [Apiales: Apiaceae]), interactions between a specialist herbivore, the parsnip webworm (Depressaria radiella), and its associated parasitoids were compared during a single growing season. We found host plant species-related differences in the abundance of moth pupae, the specialist polyembryonic endoparasitoid, Copidosoma sosares, the specialist pupal parasitoid, Barichneumon heracliana, and a potential hyperparasitoid of C. sosares, Tyndaricus scaurus Walker (Hymenoptera: Encyrtidae). Adult D. radiella body mass was similar across the three small hogweed populations, but moths and their pupal parasitoid B. heracliana were smaller when developing on giant than on small hogweeds where the two plants grew in the same locality (Heteren). Mixed-sex and all-male broods of C. sosares were generally bigger than all-female broods. Furthermore, adult female C. sosares were larger than males and adult female mass differed among the three small hogweed populations. The frequency of pupal parasitism and hyperparasitism also varied in the different H. sphondylium populations. These results show that short-term (intra-seasonal) effects of plant population on multitrophic insects are variable among different species in a tightly linked food chain.


Assuntos
Himenópteros , Mariposas , Animais , Feminino , Interações Hospedeiro-Parasita , Larva , Masculino , Países Baixos , Pupa
10.
Proc Biol Sci ; 287(1922): 20192665, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32156210

RESUMO

In addition to controlling pest organisms, the systemic neurotoxic pesticide fipronil can also have adverse effects on beneficial insects and other non-target organisms. Here, we report on the sublethal effects of fipronil on the farmland butterfly Pieris brassicae. Caterpillars were reared on plants that had been grown from seeds coated with fipronil or on leaf discs topically treated with a range of fipronil dosages (1-32 µg kg-1 on dry mass basis). Females that had developed on fipronil plants laid ca half the number of eggs than females that had developed on control plants. In the bioassay with leaf discs, longevity and lifetime egg production declined with increasing fipronil dosage. Remarkably, exposure to fipronil during larval development primarily affected the adult stage. Chemical analyses of leaf tissues collected from seed-treated plants revealed concentrations of fipronil and its degradation products close to the analytical limit of detection (less than or equal to 1 µg kg-1). The effective dosage was fivefold higher in the leaf-disc than in the whole-plant experiment. In the whole plant, degradation of fipronil to products that are more toxic than fipronil may explain this discrepancy. Neurotoxicity of insecticides at the level of detection decreases the probability of pinpointing insecticides as the causal agent of harmful effects on non-target organisms.


Assuntos
Borboletas/fisiologia , Inseticidas/toxicidade , Pirazóis/toxicidade , Animais , Reprodução/efeitos dos fármacos
12.
Microbiologyopen ; 9(1): e00954, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721471

RESUMO

Endophytic bacteria are known for their ability in promoting plant growth and defense against biotic and abiotic stress. However, very little is known about the microbial endophytes living in the spermosphere. Here, we isolated bacteria from the seeds of five different populations of wild cabbage (Brassica oleracea L) that grow within 15 km of each other along the Dorset coast in the UK. The seeds of each plant population contained a unique microbiome. Sequencing of the 16S rRNA genes revealed that these bacteria belong to three different phyla (Actinobacteria, Firmicutes, and Proteobacteria). Isolated endophytic bacteria were grown in monocultures or mixtures and the effects of bacterial volatile organic compounds (VOCs) on the growth and development on B. oleracea and on resistance against a insect herbivore was evaluated. Our results reveal that the VOCs emitted by the endophytic bacteria had a profound effect on plant development but only a minor effect on resistance against an herbivore of B. oleracea. Plants exposed to bacterial VOCs showed faster seed germination and seedling development. Furthermore, seed endophytic bacteria exhibited activity via volatiles against the plant pathogen F. culmorum. Hence, our results illustrate the ecological importance of the bacterial seed microbiome for host plant health and development.


Assuntos
Bactérias/metabolismo , Brassica/crescimento & desenvolvimento , Endófitos/metabolismo , Sementes/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/farmacologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Brassica/microbiologia , Endófitos/classificação , Endófitos/genética , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Germinação/efeitos dos fármacos , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Sementes/microbiologia , Reino Unido , Compostos Orgânicos Voláteis/metabolismo
13.
Insects ; 10(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514415

RESUMO

Two major ecological factors determine the fitness of an insect herbivore: the ability to overcome plant resistance strategies (bottom-up effects) and the ability to avoid or resist attack by natural enemies such as predators and parasitoids (top-down effects). In response to differences in selection pressure, variation may exist in host-plant adaptation and immunity against parasitism among populations of an insect herbivore. We investigated the variation in larval performance of six different Plutella xylostella populations originating from four continents when feeding on a native Dutch plant species, Brassica rapa. One of the used populations has successfully switched its host plant, and is now adapted to pea. In addition, we determined the resistance to attack by the endoparasitoid Diadegma semiclausum originating from the Netherlands (where it is also native) and measured parasitoid performance as a proxy for host resistance against parasitism. Pupal mortality, immature development times, and adult biomass of P. xylostella differed significantly across populations when feeding on the same host plant species. In addition, parasitism success differed in terms of parasitoid adult emergence and their biomass, but not their development times. Variation among natural populations of insects should be considered more when studying interactions between plants and insects up the food chain.

14.
Ecology ; 100(11): e02819, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310666

RESUMO

Changes in the frequency, duration, and intensity of rainfall events are among the abiotic effects predicted under anthropogenic global warming. Heavy downpours may profoundly affect the development and survival of small organisms such as insects. Here, we examined direct (physically on the insects) and indirect (plant-mediated) effects of simulated downpours on the performance of caterpillars of two lepidopteran herbivores (Plutella xylostella and Pieris brassicae) feeding on black mustard (Brassica nigra) plants. Host plants were exposed to different rainfall regimes both before and while caterpillars were feeding on the plants in an attempt to separate direct and indirect (plant-mediated) effects of rainfall on insect survival and development. In two independent experiments, downpours were simulated as a single long (20 min) or as three short (5 min) daily events. Downpours had a strong negative direct effect on the survival of P. xylostella, but not on that of P. brassicae. Direct effects of downpours consistently increased development time of both herbivore species, whereas effects on body mass depended on herbivore species and downpour frequency. Caterpillar disturbance by rain and recorded microclimatic cooling by 5°C may explain extended immature development. Indirect, plant-mediated effects of downpours on the herbivores were generally small, despite the fact that sugar concentrations were reduced and herbivore induction of secondary metabolites (glucosinolates) was enhanced in plants exposed to rain. Changes in the frequency of precipitation events due to climate change may impact the survival and development of insect herbivores differentially. Broader effects of downpours on insects and other arthropods up the food chain could seriously impair and disrupt trophic interactions, ultimately destabilizing communities.


Assuntos
Borboletas , Herbivoria , Animais , Mudança Climática , Insetos , Larva , Chuva
15.
J Chem Ecol ; 44(10): 894-904, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066038

RESUMO

A recent study showed that a wingless parasitoid, Gelis agilis, exhibits a suite of ant-like traits that repels attack from wolf spiders. When agitated, G. agilis secreted 6-methyl-5-hepten-2-one (sulcatone), which a small number of ant species produce as an alarm/panic pheromone. Here, we tested four Gelis parasitoid species, occurring in the same food chain and microhabitats, for the presence of sulcatone and conducted two-species choice bioassays with wolf spiders to determine their degree of susceptibility to attack. All four Gelis species, including both winged and wingless species, produced sulcatone, whereas a closely related species, Acrolyta nens, and the more distantly related Cotesia glomerata, did not. In two-choice bioassays, spiders overwhelmingly rejected the wingless Gelis species, preferring A. nens and C. glomerata. However, spiders exhibited no preference for either A. nens or G. areator, both of which are winged. Wingless gelines exhibited several ant-like traits, perhaps accounting for the reluctance of spiders to attack them. On the other hand, despite producing sulcatone, the winged G. areator more closely resembles other winged cryptines like A. nens, making it harder for spiders to distinguish between these two species. C. glomerata was also preferred by spiders over A. nens, suggesting that other non-sulcatone producing cryptines nevertheless possess traits that make them less attractive as prey. Phylogenetic reconstruction of the Cryptinae reveals that G. hortensis and G. proximus are 'sister'species, with G. agilis, and G.areator in particular evolving along more distant trajectories. We discuss the possibility that wingless Gelis species have evolved a suite of ant-like traits as a form, of mimicry to repel predators on the ground.


Assuntos
Formigas/anatomia & histologia , Formigas/fisiologia , Aranhas/fisiologia , Asas de Animais , Animais , Formigas/classificação , Formigas/metabolismo , Bioensaio , Cetonas/metabolismo , Cetonas/farmacologia , Filogenia , Comportamento Predatório/efeitos dos fármacos , Aranhas/efeitos dos fármacos
16.
Sci Rep ; 8(1): 12678, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140028

RESUMO

Studies reporting domestication effects on plant defences have focused on constitutive, but not on induced defences. However, theory predicts a trade-off between constitutive (CD) and induced defences (ID), which intrinsically links both defensive strategies and argues for their joint consideration in plant domestications studies. We measured constitutive and induced glucosinolates in wild cabbage (Brassica oleracea ssp. oleracea) and two domesticated varieties (B. oleracea var. acephala and B. oleracea var. capitata) in which the leaves have been selected to grow larger. We also estimated leaf area (proxy of leaf size) to assess size-defence trade-offs and whether domestication effects on defences are indirect via selection for larger leaves. Both CD and ID were lower in domesticated than in wild cabbage and they were negatively correlated (i.e. traded off) in all of the cabbage lines studied. Reductions in CD were similar in magnitude for leaves and stems, and CD and leaf size were uncorrelated. We conclude that domestication of cabbage has reduced levels not only constitutive defences but also their inducibility, and that reductions in CD may span organs not targeted by breeding. This reduction in defences in domesticated cabbage is presumably the result of direct selection rather than indirect effects via trade-offs between size and defences.


Assuntos
Brassica/metabolismo , Folhas de Planta/metabolismo , Cruzamento , Domesticação , Glucosinolatos/metabolismo
17.
Chemoecology ; 28(3): 77-89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29904237

RESUMO

Levels of plant secondary metabolites are not static and often change in relation to plant ontogeny. They also respond to abiotic and biotic changes in the environment, e.g., they often increase in response to biotic stress, such as herbivory. In contrast with short-lived annual plant species, especially those with growing periods of less than 2-3 months, investment in defensive compounds of vegetative tissues in biennial and perennial species may also vary over the course of an entire growing season. In garden experiments, we investigated the dynamics of secondary metabolites, i.e. glucosinolates (GSLs) in the perennial wild cabbage (Brassica oleracea), which was grown from seeds originating from three populations that differ in GSL chemistry. We compared temporal long-term dynamics of GSLs over the course of two growing seasons and short-term dynamics in response to herbivory by Pieris rapae caterpillars in a more controlled greenhouse experiment. Long-term dynamics differed for aliphatic GSLs (gradual increase from May to December) and indole GSLs (rapid increase until mid-summer after which concentrations decreased or stabilized). In spring, GSL levels in new shoots were similar to those found in the previous year. Short-term dynamics in response to herbivory primarily affected indole GSLs, which increased during the 2-week feeding period by P. rapae. Herbivore-induced changes in the concentrations of aliphatic GSLs were population-specific and their concentrations were found to increase in primarily one population only. We discuss our results considering the biology and ecology of wild cabbage.

18.
J Anim Ecol ; 87(4): 1046-1057, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29672852

RESUMO

Wind is an important abiotic factor that influences an array of biological processes, but it is rarely considered in studies on plant-herbivore interactions. Here, we tested whether wind exposure could directly or indirectly affect the performance of two insect herbivores, Plutella xylostella and Pieris brassicae, feeding on Brassica nigra plants. In a greenhouse study using a factorial design, B. nigra plants were exposed to different wind regimes generated by fans before and after caterpillars were introduced on plants in an attempt to separate the effects of direct and indirect wind exposure on herbivores. Wind exposure delayed flowering, decreased plant height and increased leaf concentrations of amino acids and glucosinolates. Plant-mediated effects of wind on herbivores, that is effects of exposure of plants to wind prior to herbivore feeding, were generally small. However, development time of both herbivores was extended and adult body mass of P. xylostella was reduced when they were directly exposed to wind. By contrast, wind-exposed adult P. brassicae butterflies were significantly larger, revealing a trade-off between development time and adult size. Based on these results, we conducted a behavioural experiment to study preference by an avian predator, the great tit (Parus major) for last instar P. brassicae caterpillars on plants that were exposed to either control (no wind) or wind (fan-exposed) treatments. Tits captured significantly more caterpillars on still than on wind-exposed plants. Our results suggest that P. brassicae caterpillars are able to perceive the abiotic environment and to trade off the costs of extended development time against the benefits of increased size depending on the perceived risk of predation mediated by wind exposure. Such adaptive phenotypic plasticity in insects has not yet been described in response to wind exposure.


Assuntos
Borboletas/fisiologia , Herbivoria , Mariposas/fisiologia , Mostardeira/fisiologia , Comportamento Predatório , Aves Canoras/fisiologia , Vento , Animais , Borboletas/crescimento & desenvolvimento , Cadeia Alimentar , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento
19.
J Insect Physiol ; 107: 110-115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29555347

RESUMO

Among parasitoids that develop inside the bodies of feeding, growing hosts (so-called 'koinobiont' endoparasitoids), two strategies have evolved to dispose of host resources. The larvae of one group consumes most host tissues before pupation, whereas in the other the parasitoid larvae consume only host hemolymph and fat body and at maturity emerge through the host cuticle to pupate externally. Here we compared development and survival (to adult emergence) of two related larval endoparasitoids (Braconidae: Microgastrinae) of the diamondback moth, Plutella xylostella. Larvae of Dolichogenidea sicaria are tissue feeders whereas larvae of Cotesia vestalis are hemolymph feeders. Here, development of P. xylostella and the two parasitoids was compared on three populations (one cultivar [Cyrus], two wild, [Winspit and Kimmeridge]) of cabbage that have been shown to vary in direct defense and hence quality. Survival of P. xylostella and C. vestalis (to adult eclosion) did not vary with cabbage population, but did so in D. sicaria, where survival was lower when reared on the wild populations than on the cultivar. Furthermore, adult herbivore mass was significantly higher and development was significantly shorter in moths reared on the cultivar. The tissue-feeing D. sicaria was larger but took longer to develop than the hemolymph-feeder C. vestalis. The performance of both parasitoids was better on the cabbage cultivar than on the wild populations, although the effects were less apparent than in the host. Our results show that (1) differences in plant quality are diffused up the food chain, and (2) the effects of host quality are reflected on the development of both parasitoids.


Assuntos
Interações Hospedeiro-Parasita , Mariposas/fisiologia , Mariposas/parasitologia , Vespas/fisiologia , Animais , Antibiose , Brassica/química , Dieta , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Vespas/crescimento & desenvolvimento
20.
Glob Chang Biol ; 24(2): 631-643, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28731514

RESUMO

Global climatic changes may lead to the arrival of multiple range-expanding species from different trophic levels into new habitats, either simultaneously or in quick succession, potentially causing the introduction of manifold novel interactions into native food webs. Unraveling the complex biotic interactions between native and range-expanding species is critical to understand the impact of climate change on community ecology, but experimental evidence is lacking. In a series of laboratory experiments that simulated direct and indirect species interactions, we investigated the effects of the concurrent arrival of a range-expanding insect herbivore in Europe, Spodoptera littoralis, and its associated parasitoid Microplitis rufiventris, on the native herbivore Mamestra brassicae, and its associated parasitoid Microplitis mediator, when co-occurring on a native plant, Brassica rapa. Overall, direct interactions between the herbivores were beneficial for the exotic herbivore (higher pupal weight than the native herbivore), and negative for the native herbivore (higher mortality than the exotic herbivore). At the third trophic level, both parasitoids were unable to parasitize the herbivore they did not coexist with, but the presence of the exotic parasitoid still negatively affected the native herbivore (increased mortality) and the native parasitoid (decreased parasitism rate), through failed parasitism attempts and interference effects. Our results suggest different interaction scenarios depending on whether S. littoralis and its parasitoid arrive to the native tritrophic system separately or concurrently, as the negative effects associated with the presence of the parasitoid were dependent on the presence of the exotic herbivore. These findings illustrate the complexity and interconnectedness of multitrophic changes resulting from concurrent species arrival to new environments, and the need for integrating the ecological effects of such arrivals into the general theoretical framework of global invasion patterns driven by climatic change.


Assuntos
Herbivoria/fisiologia , Himenópteros/fisiologia , Lepidópteros/parasitologia , Plantas/classificação , Distribuição Animal , Animais , Europa (Continente) , Cadeia Alimentar , Interações Hospedeiro-Parasita , Espécies Introduzidas , Larva , Parasitos , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...